orcid: 0009-0003-8335-3302, ResearcherID: AAB-5130-2021

preprints

A. Miraçi, J. Papež, M. Vohralík, and I. Yotov. A-posteriori-steered p-robust multigrid and domain decomposition methods with optimal step-sizes for mixed finite element discretizations of elliptic problems. Submitted. [ HAL preprint ]

book chapter

J. Papež. Algebraic error in numerical PDEs and its estimation. in Error Control, Adaptive Discretizations, and Applications, Part 1 (F.Chouly, S.P.A. Bordas, R.Becker, and P.Omnes eds.), Advances in Applied Mechanics, 58:363-413, 2024. [ online preview ,  DOI ]

published papers

M. Hanek, J. Papež, and J. Šístek. Speeding up an unsteady flow simulation by adaptive BDDC and Krylov subspace recycling. Computer Methods in Applied Mechanics and Engineering  452B, 2026. [ free preview ,  DOI ,  arXiv ]

P. Vacek, J. Papež, and Z. Strakoš. A posteriori error estimates based on multilevel decompositions with large problems on the coarsest level. Electronic Transactions on Numerical Analysis (ETNA)  63, 2025. [ DOI ,  arXiv ]

G. Meurant, J. Papež, and P. Tichý. Block conjugate gradient methods with error norm estimates for least squares problems. BIT Numerical Mathematics  66, 2, 2026. [ free preview ,  DOI ]

J. Papež and P. Tichý. Estimating error norms in CG-like algorithms for least-squares and least-norm problems. Numerical Algorithms, 97:1-28, 2024. [ DOI ]

J. Papež and M. Vohralík. Inexpensive guaranteed and efficient upper bounds on the algebraic error in finite element discretizations. Numerical Algorithms, 89:371–407, 2022. [ DOI ]

G. Meurant, J. Papež, and P. Tichý. Accurate error estimation in CG. Numerical Algorithms, 88:1337–1359, 2021. [ DOI ]

A. Miraçi, J. Papež, and M. Vohralík. Contractive local adaptive smoothing based on Dörfler marking in a-posteriori-steered p-robust multigrid solvers. Comput. Methods Appl. Math., 21(2):445--468, 2021. [ DOI ]

A. Miraçi, J. Papež, and M. Vohralík. A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps. SISC, 2021. SPECIAL SECTION Copper Mountain 2020. [ DOI ]

A. Anciaux-Sedrakian, L. Grigori, Z. Jorti, J. Papež, and S. Yousef. Adaptive solution of linear systems of equations based on a posteriori error estimators. Numerical Algorithms, 84(1):331--364, 2020. [ DOI ]

J. Papež, U. Rüde, M. Vohralík, and B. Wohlmuth. Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach: Recovering mass balance in any situation. Computer Methods in Applied Mechanics and Engineering, 371:113243, 2020. [ DOI ]

A. Miraçi, J. Papež, and M. Vohralík. A Multilevel Algebraic Error Estimator and the Corresponding Iterative Solver with p-Robust Behavior. SINUM, 58(5):2856--2884, 2020. [ DOI ]

J. Papež, L. Grigori, and R. Stompor. Accelerating linear system solvers for time-domain component separation of cosmic microwave background data. Astronomy&Astrophysics, 638:A73, 2020. [ DOI ]

J. Papež, L. Grigori, and R. Stompor. Solving linear equations with messenger-field and conjugate gradient techniques: An application to CMB data analysis. Astronomy&Astrophysics, 620:A59, 2018. [ DOI ]

J. Papež, Z. Strakoš, and M. Vohralík. Estimating and localizing the algebraic and total numerical errors using flux reconstructions. Numer. Math., 138(3):681--721, Mar 2018. [ DOI ]

J. Papež and Z. Strakoš. On a residual-based a posteriori error estimator for the total error. IMA Journal of Numerical Analysis, 38(3):1164--1184, Sep 2017. [ DOI ]

J. Papež, J. Liesen, and Z. Strakoš. Distribution of the discretization and algebraic error in numerical solution of partial differential equations. Linear Algebra Appl., 449:89--114, 2014. [ DOI ]

PhD thesis

J. Papež. Algebraic Error in Matrix Computations in the Context of Numerical Solution of Partial Differential Equations. PhD thesis, Charles University, Prague, November 2016. [ .pdf ]

talks (selected)