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Chapter 2
Multilevel Splittings

In this chapter, we collect results for the multilevel splitting of finite element
spaces. Our presentation is motivated by recent results of Oswald [70], [75], [76]
and Dahmen and Kunoth [34]. These papers are in turn related to the quickly
developing theory of multilevel preconditioners as studied by Yserentant [111],
[112], [113], [114], Xu [108], {109], Bramble, Pasciak, and Xu [25], Dryja and
Widlund [37], [38], S. Zhang [115], and X. Zhang [116]. The approach by
Oswald, Dahmen, and Kunoth is based on results from the theory of function
spaces. The relationship of this abstract theory to multilevel methods is
developed in a sequence of papers and reports [34], [69], [68], [70], [71], [72],
[74], [73], [75], [76].

As the basic algorithmic structure, we introduce the so-called multilevel
additive Schwarz method. The idea is to use a hierarchy of levels for a multi-
scale representation of the problem and to combine the contributions of all
levels in a sum. This process implicitly defines an operator sum that is well
behaved and that has bounded condition number independent of the number
of levels. Thus, it is suitable for fast iterative inversion by conjugate gradient-
type algorithms.

The recent theoretical approach to these methods by Oswald (see the
papers cited above) is based on results in approximation theory, in particular
on methods from the theory of Besov spaces. The relevant basic results can be
found in Nikol’skii [66] and Triebel [105]. An outline of these results, including
a bibliography, is also given in a survey article by Besov, Kudrayavtsev,
Lizorkin, and Nikol'skii [15].

From a more general perspective, the multilevel additive Schwarz method is
also related to multigrid methods and their theory. Classical multigrid methods
can be interpreted as a multiplicative Schwarz method where the levels are
visited sequentially and the basic structure is a product of operators.

Multigrid convergence theory has been studied in so many papers that a
complete bibliography cannot be given in the context of this monograph. We
refer to Hackbusch [43] and McCormick [56] for the classical theory and to
Yserentant [114] for a review of recent developments.

It should be noted that the interpretation of multilevel techniques as
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Schwarz methods uses the structure of nested spaces and symmetric operators
corresponding to what is known as variational multigrid. The classical
multigrid theory is more general in this respect, because it assumes relations
only between the (possibly nonsymmetric) operators; it assumes no special
relations between the grid spaces.

The unified multigrid convergence theory developed from the Schwarz
concept seems to need nesting of the spaces and symmetry of the operators
(however, see attempts to generalize these limitations by Bramble, Pasciak, and
Xu [26] and Xu [110]). At this stage, the new theory also fails to describe some
features of the multigrid principle, like the dependency of the performance on
the number of smoothing steps per level. Typically, however, the new theory
does not need as strong regularity assumptions as the classical multigrid theory.
The interested reader is referred to the original papers by Dryja and Widlund
[38], Bramble, Pasciak, Wang, and Xu [24], [23], [25], [109], and Zhang [116],
where the theory is developed.

Here, we will describe these new techniques, following closely the approach
by Oswald, Dahmen, and Kunoth, because they provide an elegant theoretical
foundation of the fast adaptive methods that will be discussed in Chapter
3. Our emphasis here is to give a consistent presentation of the abstract
foundation in approximation theory and its application to the prototype finite
element situations that arise in the solution of the model problems in §1.3. In
particular, we will show that the same theoretical background can be used to
justify fast iterative solvers, error estimates, and mesh refinement strategies.

2.1. Abstract stable splittings

The basis of multilevel algorithms is a decomposition or splitting of the solution
space into subspaces. Multilevel algorithms depend on this structure and its
particular features. To classify multilevel splittings, we introduce the notion
of a stable splitting that we will describe in an abstract setting.
We assume that the basic space V is a Hilbert space equipped with a scalar
product (-, )y and the associated norm
1/2
lufly = (u,u)y "
The elliptic partial differential equation is formulated with a V-elliptic,
symmetric, continuous bilinear form a : V x V — R. Thus there exist
constants 0 < ¢; < ¢g < 0o such that

(2.1) (v, v)v < a(v,v) < ecz{v,v)y

for all v € V. In view of the model problems (1.1)—-(1.2) and their variational
form, we study the abstract problem: Find u € V such that

(2.2) a(u,v) = &(v)

for all v € V', where the functional ® € V* is a continuous linear form.
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To introduce a multilevel structure we consider a finite or infinite collection
{Vj}jes of subspaces of V, each with its own scalar product (,-)y; and the
associated norm

_ 1/2
lully, = ()t
We further assume that the full space V' can be represented as the sum of the
subspaces Vj, j € J,

(2.3) V=3V

REMARK 2.1.1. Later we will additionally assume that the spaces are
nested, that is, J C No, V; C V}, if i < j. The theory in this section,
however, does not depend on this assumption and without it many more
iterative methods can be described in the abstract framework, including classical
relaxation methods, block relazation, and domain decomposition.

REMARK 2.1.2. In typical applications, || - ||v is equivalent to the H'-
Sobolev norm. It is our goal to build equivalent norms based on the subspaces
V; and their associated norms. The subspace norms | - ||y, will be properly
scaled Ly-norms. Based on the associated bilinear forms, we can construct
a multilevel operator that uses elementary operations (based on the La-inner
products) on all levels, except possibly the coarsest one; see Definitions 2.1.3
and 2.1.4. If this operator is spectrally equivalent to the original operator, it
can be used to build efficient preconditioners, error estimates, and refinement
algorithms.

The system of subspaces induces a structure in the full space. Any element
of V can be represented as a sum of elements in V;, j € J. Generally,
this representation is nonunique. This observation gives rise to the following
definition.

DEFINITION 2.1.1. The additive Schwarz norm ||| - || in V with respect
to the collection of subspaces {V;};cs is defined by

1/2
def .
(2.4) [lvf[| = inf (Z llvjll?/,-)

JjeJ

’UjEVj, Zvj:v
Jj€J

As we will show, how well a multilevel algorithm converges depends on how
well the multilevel structure captures the features of the original problem, that
is, how well the additive Schwarz norm approximates the original norm (-, )y
in V. This motivates the following definition.

DEFINITION 2.1.2. A collection of spaces {V;}jes ts called a stable

splitting of V if
V-V
JjeJ

and if || - ||v is equivalent to the additive Schwarz norm of V, that is, if there
exist constants 0 < c3 < ¢q4 < 0 such that

2
(2.5) esllolly < Noll* < eallvl
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for allv € V. The number

(2.6) AV {V;}ses) € inf(eafcs),
that is, the infimum over all possible constants in (2.5), is called the stability
constant of the splitting {V;}jcJ.

REMARK 2.1.3. If V is finite-dimensional, any splitting is stable. The
concept of a stable splitting is therefore primarily relevant in an infinite-
dimensional setting. In practice, the problem in a finite-dimensional space
is not to show the existence of a stable splitting, but to study the size of the
stability constant. We will assume that the finite-dimensional discrete space
is embedded in an infinite-dimensional space. By showing that the splitting of
the infinite-dimensional space is stable, we can derive bounds for the stability
constant that are uniform in the number of levels.

The definition of a stable splitting leaves room for many cases, including
pathological ones.

Ezample. Consider a splitting of an arbitrary nontrivial Hilbert space V
into two subspaces Vj and V2. Let Vi = span{z} for some z € V, = # 0, and

def
”O"THV1 = |Oz|,
where o € R. Then let Va =V and || - ||y, = || - ||v- To show that the splitting

V = Vi + V; is stable, we must show that (2.5) holds. In this simple case we
have

_ 2 12 — i \/ 2 — a2
lolll = jnf /ol + v = will}, = jof /o2 + llv - ealf}.

Therefore, the upper bound holds trivially with ¢4 = 1 (set & = 0). The lower
bound can be constructed as follows:

loll? = inf (o2 + |lv - aalf})

inf

acR
. 2 . 2

> inf (o + ([vlv - allelv)’)

— i 2y 2 2

= inf ((L+ [=ll})e® = 2llzlvlvlve + [o]?)

_ =(l=llvllvllv)® + vl (1 + 1l
1+ ||zl

= C”v”%/’

where ¢ = 1/(1 + ||z||?). Despite the stability, the practical value of the
splitting is doubtful. As we will see further below, Vo =V and || - ||y, = || - llv
imply that methods based on this splitting involve the solution of a problem
that is equivalent to the original one.

The following example is more typical for the situations that are of interest
to us.
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Ezample. Let the one-dimensional Fourier components ¢, be given by

¢n:{ [0’1] — ]R,

dn(z) = sin(nnz),

n € IN. Consider the space

(2.7) V:{f=zan¢nl ||va<00},
n=1
where a, € R and
(2.8) 3 ande| |3 na2
n=1 1% n=1

Subspaces of V' are now defined by

271
(2'9) V] = {f = Z an¢n} cV,

n=1

where j € IN and the corresponding norms are defined by

27 -1 dof 29 —~1
(2.10) > antn|| =2, al.
n=1 V; n=1

Note that || - ||y corresponds to an H!-norm, while || - ||y, corresponds to a
(scaled) Lp-norm.

Next, we show that the spaces (V},|| - [|v;), j € N, are a stable splitting of
(V.| - |lv)- Clearly, each f € V can be decomposed in the form

oo 291

(2.11) F=Y andn=>_>" anj¢n,
n=1 1=1 n=1
=fieV;

where Z;‘;l Gnj = Q. Setting a,; =0if n > 27 we have

o0 ) 00 291 00 00
25 2 -

Sl =329 Y a2, =3 S 2%l

j=1 j=1 n=1 n=1j=1
so that

oo 00 o0
(212) “‘f”' = inf l!fg”%/ = inf 22ja2. = 22jna2’
13€V3. 22 fi=f ’ ZanFGnnz::uZ:l " ngl "

where j, is the smallest positive integer such that 2» > n. Clearly,
n < 29 < 2n,

so that the lower bound in (2.5) holds with ¢3 = 1 and the upper bound holds
with ¢4 = 22.
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We now continue our discussion of the abstract theory of stable splittings.
To describe multilevel algorithms we further introduce Vj-elliptic, symmetric,
bilinear forms
bj : VJ X V} — R

in the spaces Vj, respectively. These bilinear forms give us the flexibility to
describe a wider class of multilevel algorithms within our framework. The
particular choice of b; will lead to different multilevel algorithms. In a
first reading one may think of b;(-,-) = (-,-)v;. Generally, for a properly
working multilevel algorithm, we require that the b; are equivalent to the
respective inner product of the subspace, that is, that there exist constants
0 < ¢5 < ¢g < 00 such that

(2.13) cs(vj,v)v; < bi(vs,v5) < cs(vj, v4)v;,

for all v; € V;, 5 € J.

Based on these Vj-elliptic bilinear forms, the components of a multilevel
algorithm can be defined. In our setup, multilevel algorithms are described
in terms of subspace corrections, mapping the full space V into each of the
subspaces V.

DEeFINITION 2.1.3. The mappings Py, : V — V; are defined by the
variational problem

(214) bj(PVJua UJ) = a’(u’a vj)s
for allv; €'V}, j € J. Analogously, we define ¢; € V; by
(2.15) bj(dj,v5) = 2(v),

forallv; eV, jeJ.
With the subspace corrections we can define the additive Schwarz operator
as follows.

DEFINITION 2.1.4. The additive Schwarz operator (also called BPX
operator) Py : V — V with respect to the multilevel structure on V (that is,

a(-,+), {Vj}ies, and b;(-,-)) is defined by

(2.16) Py=>_ Py,

jed
Analogously, ¢ € V is defined by
(2.17) o= ¢;

JjeJ

REMARK 2.1.4. The operator Py provides the basis for the so-called
additive Schwarz method. In Theorem 2.1.1 below we will also show that Py
can be used to build problems equivalent to the discrete variational problem (see
equation (2.18)), but with much better conditioning, so that they can be solved
efficiently by iterative techniques.
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REMARK 2.1.5. With a suitably defined bilinear form b;, it is possible
to evaluate Py efficiently based on its definition as a sum. The explicit
construction of Py, which would be inefficient, is not required.

REMARK 2.1.6. Many iterative algorithms, including Jacobi iteration,
block-Jacobi, domain decomposition, and variational multigrid methods, can
be described in the abstract framework given in Definitions 2.1.1-2.1.4. Most
of these methods, however, do not generate a stable splitting of the infinite-
dimenstonal function space. The hierarchical structure in the subspace system
seems to be essential for obtaining a stable splitting. Otherwise, the complezity
of the original problem would have to be captured in the bilinear forms b;(-,-),
and then the evaluation of the Py, would be as expensive as the solution of the
original problem itself (see also the examples above).

We conclude this abstract discussion by stating and proving two theorems
that show the relationship between the concept of a stable splitting and the
properties of the additive Schwarz operator. Based on Definitions 2.1.1-2.1.4,
the following theorem holds.

THEOREM 2.1.1. Assume that the subspaces V;, j € J, of a Hilbert space
V' are a stable splitting. Assume further that Py, and Py are defined as
in Definitions 2.1.3 and 2.1.4 with bilinear forms b; satisfying (2.13). The
variational problem (2.2) is equivalent to the operator equation

(2.18) Pyu=¢,
and the spectrum of Py can be estimated by
c c
(2-19) ”_1‘ S )\min(PV) S /\max(PV) S "*E‘
C4Cq C3Cs

Proof. The unique solvability of (2.18) is a consequence of the positive
definiteness asserted in (2.19) that we will prove below. The solution of (2.18)
coincides with the solution of (2.2) by the definition of Py, and ¢; see Definition
2.1.4 and equations (2.16), (2.17), respectively.

We now establish the lower bound of the spectrum asserted in (2.19). Let
u; € Vj, j € J, be an arbitrary decomposition of v € V', that is, 3 ;c;u; = u.
Then

a{u,u) = Za(uj,u) = Z bi(Pyv,u, uj)

JjeJ jeJ

1/2 1/2
< (Z bjwu,Pwu)) (}: b,.(u,.,uj))

jed jeJ

1/2 1/2
(gemee)” [geeon)

j€d j€d
Taking the infimum of all decompositions of the form

D u=u

jeJ
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we get
a(u,u) < a(PVU,u)1/2C(15/2”|U]||

< a(Pyu, u)1/2(6604)1/2||u”V

< a(Pyu,u)/?(cgea/cr)  a(u, u) 2,
Therefore,

a1

290 a(Pru,u) 2 —aly,u).
(2.20) (Pru,u) 2 ——a(u,4)

This establishes the lower bound in (2.19). Thus Py is invertible so that we
can define a uniquely determined z € V' that satisfies Pz = u. Hence,

a(P; u,u) = a(z, Prz) = Y a(z, Py,2)
JjeJ
Z:EE:by(fRGz,fﬁgz)
JeEJ
> c5 ) (Pv;z Pyyz)y,
jeJ
> cs||| Py 2|

> cses|| Py 2|
c3Cs

> _02_“(“’“)'
We conclude that
a(v, Pyv) < ——a(v,v)
C3Cs
for all v € V. This yields the upper bound on the spectrum asserted in (2.19).

REMARK 2.1.7. Theorem 2.1.1 shows that the additive Schwarz method
generates a well-conditioned operator if the splitting of the space is stable.

REMARK 2.1.8. Results related to Theorem 2.1.1 have been shown by
other authors, in many cases restricted to special cases like V = H(Q).
The interested reader is referred to, e.g., Yserentant [111], Bramble, Pasciak,
and Xu [25], Dryja and Widlund [38], and Zhang [116]. Our presentation of
Theorem 2.1.1 has followed Oswald [75].

Computationally, applying the additive Schwarz operator P, amounts
to transferring the residual to all subspaces V;, applying the inverse of the
operator defined by b; in each subspace, and finally collecting the interpolated
results back in V. In the language of multigrid methods, the transfer to V;
is a restriction. The b; implicitly define which kind of smoothing process is
used. In the simplest case, the restricted residual is only scaled appropriately,
corresponding to a Richardson smoother.

From the perspective of classical multigrid, it may be surprising that the
additive operator has a uniformly bounded condition number, meaning that
effective solvers with multigrid efficiency can be obtained by applying steepest
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FiG. 2.1. Idealized spectrum of the discrete Laplace operator.

descent or conjugate gradient iteration to this system. Classical multigrid is
formulated as a sequential algorithm where the levels are visited one after
the other. The multilevel additive Schwarz method is the corresponding
simultaneous variant, where the work on the levels is done in parallel (however,
see Remark 2.1.9). The sequential treatment of the levels is not necessary for
obtaining optimal orders of efliciency.

To illustrate the method, we now visualize the effect of the additive Schwarz
process. We assume that V describes the solution space of the discretized two-
dimensional Laplacian. In Fig. 2.1 we visualize the spectrum of the discretized
Laplace operator. The figure shows the eigenvalues, where the z- and y-axes
in the plot represent the frequencies with respect to the two original spatial
directions. Each eigenvalue is represented by a point on the graph of the
function

(2.21) f(z,y) = 3 — (cos(nz) + cos(my))/4

for h € z,y < 1, where h is the mesh size. The z- and y-coordinates specify the
frequency of the Fourier mode relative to the mesh size. Here, we have scaled
the discrete Laplacian such that the extreme eigenvalues occur in the northeast
corner (near (1,1)) and the southwest corner of the frequency domain, where
the values are O(1) and O(h?), respectively. Thus, for this example problem,
the condition number grows with O(1/h?). Consequently, iterative methods,
like steepest descent, need a number of cycles to converge, that is, proportional

to O(h™2).
The additive Schwarz method additionally transfers the residual to coarser
levels with mesh sizes 2h,4h,8h,... . This transfer is idealized by restricting

the full spectrum represented by (h,1) x (k, 1) to the squares (k,0.5) x (h,0.5),
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Fi1G. 2.2. Idealized spectrum of the additive Schwarz operator associated with the
Laplacian.

(h,0.25) x (h,0.25), ... . On the coarser levels, the result is rescaled, such that
the maximum value in the restricted spectrum is again 1. The results of all
levels are finally extended to the full spectrum and are added together. The
result of this process is displayed in the function plot of Fig. 2.2.

The multilevel sum of operators, whose eigenvalues are represented in Fig.
2.2, seems to have a minimal eigenvalue bounded away from 0 and a maximal
eigenvalue not much larger than the Laplacian itself. The plot suggests that
the minimum and maximum value of the combined spectrum are bounded
independently of the number of levels.

The method, as it is discussed in this idealized setting, is impractical
because the transfer between levels by exact cut-off functions in Fourier space
cannot be implemented efficiently. The usual transfer operations are only
approximate cut-off functions in Fourier space. This would have to be taken
into account in a rigorous analysis.

REMARK 2.1.9. For computing the additive Schwarz operator Py applied
to a function one may think of evaluating the terms Py,u in the sum in
parallel. This can be exploited most efficiently if the spaces are non-nested,
e.g., when {Vj};es arise from a domain decomposition. Classical domain
decomposition with many subdomains and without coarse mesh spaces, however,
does not cause stable splittings. These usually depend in an essential way
on a hierarchical structure, often a nesting of the spaces. Unfortunately, a
straightforward parallelization of the sum for nested spaces is often inefficient,
since the terms in the sum naturally depend on each other. More precisely,
in the case of global meshes, the usual way to compute Pyu automatically
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generates Py,u for all j > i. Thus, an optimized implementation treating
the levels sequentially may be equally fast, but will need only one processor.
The multilevel additive Schwarz method must therefore be parallelized using
techniques such as those used in the parallelization of multigrid methods (see
McBryan et al. [55]). These approaches are usually based on a domain
decomposition, and a common problem, then, is that processors tend to go
idle on coarse grids, leading to reduced parallel efficiency.

This argument assumes that we use simple residual corrections on each
level and that the hierarchical structure is induced by global mesh refinement.
Treating levels in parallel may be attractive, if the process on each level (the
smoothing) is computationally significantly more expensive than the restriction
operators, or when the mesh structure is highly nonuniform. One such case is
the asynchronous fast adaptive composite grid (AFAC) method, introduced by
McCormick [57].

To illustrate the relationship between the additive Schwarz norm of
Definition 2.1.1 and the additive Schwarz operator of Definition 2.1.4, we now
study the special case, when the bilinear forms a(-,-) in V' and b;(:,-) in V;
coincide with the natural bilinear forms on the respective spaces. This is
analyzed in the following theorem.

THEOREM 2.1.2. If

(2.22) bi(--) = (v,
forall 3 € J and
(2.23) a(, ) = {, v,
then
(2.24) Ilel* = (P, uhy
for allueV.
Proof. With (2.22) and (2.23) the definition of Py, reads
(2.25) (Pv,u,vj)v, = (u,v;)v

forallwu € V, v; € V;, and j € J. Let z be defined by Pyz = u. This is
possible because Py is positive definite according to Theorem 2.1.1. We have

(P‘;lu, u)yv = (2, Py2)v

= Z(z,Pij)V

jE€J
=2 (P2 B2y,
JjeJ
9 .
> [llulll* = inf 4 > [luslly, |uj € Vi, D _uj=u
jed jeJ

because

u = Pvz = Z ijz.
Je€J
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Finally, we show that this particular splitting attains the infimum. We do
this by choosing an arbitrary splitting v; € Vj, j € J, such that ;¢ ;v; = v,
and showing that it yields a larger or equal sum of norms.

Y (i iy = ((ijz,PvJ,-Z)vj +2(v; — Py,z, Py,2)y,
JeJ Jjed
+(’Uj - ijz,vj - ijz)vj)
=3 ((Py2. P2y, + 200 = Pz, 2)y

JEJ
+(vj — Pyy2,; = P 2)y; )
= 2(u — Pyz),2)v
=0

+Z (PVJ.Z,PVJ.Z)VJ. + (’Uj — PVJ.Z,’UJ' — Pij)\@

jeJ ~

>0

2 ) (B2 Py2)y,.

Jjed

This concludes the proof.

REMARK 2.1.10. If the bilinear forms that define Py coincide with the
natural ones in V; and V, respectively, then Theorem 2.1.2 shows that Py, !
defines the bilinear form associated with the norm ||| - ||

2.2. Finite element approximation spaces in two dimensions

In this section we will apply the concept of stable splittings in the context of
finite element spaces. Typically, the full space V = H'(Q) will correspond to
the function space associated with the partial differential equation, and the
{V;}jen, will be an infinite collection of subspaces generated by successively
refining a finite element approximation of the differential equation. To apply
the results of §2.1 we will consider splittings of V' in a nested sequence of spaces

(2.26) VocWcVoacC---CV=H}Q)

generated by a regular family of nested triangulations

']'(']C’]'lc']ac...

of a bounded domain @ C R2. The proper structure for such finite element
partitions is discussed in Chapter 4. For a detailed presentation of- the
properties required for finite element partitions, see also Ciarlet [33]. We
assume that continuous, piecewise linear elements are used, corresponding
to the second order model problems of §1.3. For generalizations to more
complicated situations, see the references listed at the beginning of this chapter.



