
Multigrid Methods
Lecturer notes for NMNV571, Faculty of Mathematics and Physics, Charles

University

Jan Papez

text under construction, version of April 3, 2025

Contents

1 Key principles of the multigrid 3
1.1 Error, Residual, Iterative Refinement . 3
1.2 Model Problem and its Discretization . 4

1.2.1 Discretization in 1D . 5
1.2.2 Discretization in 2D . 5

1.3 Elements of the Multigrid . 7
1.3.1 Coarse-space correction . 7
1.3.2 Interpolation and restriction for finite differences 8
1.3.3 Stationary iterative methods and smoothing property 11

1.4 Multigrid Method . 17

2 Abstract formulation of a multigrid and its convergence 19
2.1 An abstract multigrid algorithm . 19
2.2 Convergence of a symmetric multigrid . 22

2.2.1 Smoothing assumption and stationary iterative solvers 24
2.3 Convergence in a general case . 25

1

Introduction

These notes are based on my lectures for the course Multigrid Methods (NMNV571) at the
Faculty of Mathematics and Physics, Charles University. As lecture notes, they are still a
work in progress, with the goal of continuously improving the presentation of the material
for students.

The course content is currently divided into three parts:

1. A thorough introduction to multigrid and its key principles (following [Briggs et al., 2000]),

2. An abstract formulation of multigrid, including convergence results and sufficient con-
ditions for convergence (adapted from [Shaidurov, 1995]),

3. Stable splitting as an advanced topic (following [Rüde, 1993]).

The third part may be adjusted based on students’ preferences. For instance, topics such
as algebraic multigrid or multigrid for nonlinear problems could be considered.

As of February 2025, my aim is to cover at least the first two topics in these notes.

2

Chapter 1

Key principles of the multigrid

We begin with a detailed and gradual introduction to the key principles of multigrid. For
clarity, we illustrate these concepts using a simple model problem—a Poisson equation on a
basic domain—discretized with finite differences.

Our presentation follows [Briggs et al., 2000], where additional details and numerical ex-
periments can be found. However, there is a key distinction: in much of the literature
(including [Briggs et al., 2000]), multigrid is often described as an enhancement of station-
ary iterative methods. I find this perspective overly simplistic and somewhat misleading.
Instead, we present multigrid as the combination of two complementary techniques that
together yield a truly efficient solver or preconditioner.

1.1 Error, Residual, Iterative Refinement

Consider solving
Au = f,

where A is a non-singular matrix, f is the right-hand side, and u is the exact solution. We
will denote an approximate solution either by v (if it is arbitrary) or by u(i) (if we want to
emphasize an iterative procedure).

Error or the algebraic error, is the key vector, e = u − v, or e(i) = u − u(i). Given an
approximation v with the error e, we have

v+ e = v+ u− v = u,

so that we can compute the exact solution.

Residual is the computable vector given by r = f− Av, or r(i) = f− Au(i). There holds

r = f− Av = Au− Av = A(u− v) = Ae.

3

From e = A−1r and f = Au we have

∥e∥ ≤ ∥A−1∥∥r∥, ∥f∥ ≤ ∥A∥∥u∥

and altogether
∥e∥
∥u∥

≤ ∥A∥∥A−1∥∥r∥
∥f∥

= κ(A)
∥r∥
∥f∥

,

where κ(A) = ∥A∥∥A−1∥ is the condition number of A. Therefore r = 0 if and only if v = u
but a small residual norm need not guarantee a small norm of the error if κ(A) is not small.

Iterative refinement is the following procedure for a given approximation u(i)

1. Compute the residual r(i) = f− Au(i).

2. Solve Ae(i) = r(i) approximately, giving d(i).

3. Define a new approximation u(i+1) = u(i) + d(i).

If the solution in 2. can be written as

d(i) = M−1r(i),

with some M ≈ A, then

u(i+1) = u(i) +M−1r(i) = u(i) +M−1(f− Au(i))

and for the error it holds

e(i+1) = u− u(i+1) = u− u(i) −M−1(f− Au(i)) = (I−M−1A)e(i),

where I denotes the identity matrix (of the proper size).
If M is independent of i, u(i), r(i), the above iterative scheme is called linear or stationary.

Examples of such schemes are Jacobi, Gauss–Seidel, SOR or Richardson methods.
There are also nonlinear iterative methods, for example Krylov subspace methods. Never-

theless, in (standard) preconditioned Krylov methods, a preconditioned residual is computed
as z(i) = M−1r(i) in each iteration.

1.2 Model Problem and its Discretization

Consider the homogeneous Poisson problem

−∆u = f in Ω = (0, 1)d, (1.1)

u = 0 on ∂Ω. (1.2)

We will often consider d = 1 for illustrations and d = 2 for computations. The true power
of multigrid (and multilevel methods in general) comes, in particular, with 3D problems.

The boundary conditions (1.2) can be generalized as well as reaction term σu can be
added to the left-hand side of (1.1). The domain can be more complex but not too much;
this often remains one of the limitations for an efficient (geometric) multigrid.

4

x0 x1 x2 . . . xn−1 xn

h = 1/n

Figure 1.1: Uniform partitioning in 1D

1.2.1 Discretization in 1D

Consider the uniform partitioning of the interval (0, 1) with n intervals and n+ 1 nodes

xj = jh = j/n, j = 0, 1, . . . , n.

Denote by vj an approximation to value of the exact solution u in the node xj, vj ≈ u(xj)
and consider the vector of unknowns

v = [v1, v2, . . . , vn−1]
T .

We replace the second derivative u′′ in (1.1) by the central difference,

−u′′(xj) ≈
−u(xj−1) + 2u(xj)− u(xj+1)

h2
,

giving the system of linear equations

v0 = vn = 0,

−vj−1 + 2vj − vj+1

h2
= f(xj) j = 1, 2, . . . n− 1. (1.3)

When denoting fj = f(xj), j = 1, . . . , n− 1 and f = [f1, . . . , fn−1]
T , we can write the matrix

form of (1.3)

1

h2

2 −1
−1 2 −1

.

−1 2

v1
v2
...

vn−1

 =

f1 + h−2v0

f2
...

fn−1 + h−2vn

 . (1.4)

1.2.2 Discretization in 2D

Consider the uniform partitioning of the interval (0, 1) with m+ 1 nodes

xi = ihx = i/m, i = 0, 1, . . . ,m.

and n+ 1 nodes for the y-direction

yj = jhy = j/n, j = 0, 1, . . . , n.

5

x

y

vi,j

vi,j−1

vi,j+1

vi+1,jvi−1,j

hx = 1/m

hy = 1/n

Figure 1.2: 2D partitioning with illustration of values for 2D central differences

This gives us (m + 1) × (n + 1) nodes of the mesh (xi, yj), i = 0, 1, . . . ,m, j = 0, 1, . . . , n.
Denote by vi,j an approximation to value of the exact solution u in the node (xi, yj),

vi,j ≈ u(xi, yj), i = 0, 1, . . . ,m, j = 0, 1, . . . , n.

Recall, that the model problem (1.1) in 2D reads

−∆u = − ∂2

∂x2
u− ∂2

∂y2
u = f.

Replacing the second derivatives ∂2u/∂x2 and ∂2u/∂y2 by central differences, as in 1D, gives

−vi−1,j + 2vi,j − vi+1,j

h2
x

+
−vi,j−1 + 2vi,j − vi,j+1

h2
y

= fi,j = f(xi, yj),

1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1, (1.5)

with homogeneous boundary conditions represented by

v0,j = vm,j = vi,0 = vi,n = 0, 0 ≤ i ≤ m, 0 ≤ j ≤ n. (1.6)

The system has (m − 1) × (n − 1) unknowns that can be written into a vector “row-” or
“column-wise”. We will consider the later one. Denote

vi = [vi,1, vi,2, . . . , vi,n−1]
T

fi = [fi,1, fi,2, . . . , fi,n−1]
T , 1 ≤ i ≤ m− 1,

and write (1.5) (now already with boundary conditions (1.6)) as
B −aI
−aI B −aI

.

−aI B

v1
v2
...

vn−1

 =

f1
f2
...

fn−1

 . (1.7)

6

Here aI = h−2
x I ∈ R(m−1)×(m−1) and

B = h−2
y

2
(

h2
x+h2

y

h2
x

)
−1

−1 2
(

h2
x+h2

y

h2
x

)
−1

.

−1 2
(

h2
x+h2

y

h2
x

)

 .

In the case with h = hx = hy, B = h−2 tridiag(−1, 2,−1), which is the 1D Poisson matrix
from (1.4).

Exercise. Generalize the finite-difference scheme to 3D.

1.3 Elements of the Multigrid

1.3.1 Coarse-space correction

Use of several grids (levels) is a key aspect of a multigrid. In our setting with finite-difference
discretization, we understand by a coarser grid (or level) a subset of degrees of freedom
(DOFs). In a geometric multigrid, the subset corresponds to an actual discretization grid
with a different discretization parameter; in the previous section denoted by h. Algebraic
multigrids are based on creating the grids artificially to obtain some (algebraic) properties.

The simplest case, for a presentation as well as an analysis, is a two-grid method. The
problem is posed on the fine grid, while the coarse grid is used for improving the efficiency
of solving the fine problem. Important assumption is that the problem on the coarse level is
sufficiently smaller than the one on the fine level.

To introduce a two-grid method, we need

• (Discrete) problems on the fine and coarser levels. These are represented1 by the
matrices A1 and A0. We also need the right-hand side f1 for the fine-level problem.

• The operators between the levels (intergrid operators):

interpolation I10 from the coarse-grid vectors to fine-grid ones; “from a short vector to
the long one”

restriction R0
1, “from a long vector to the short one”

Denoting by N1 the number of degrees of freedom on the fine level and by N0 the number
of DOFs on the coarse levels, the operators (matrices) discussed above have the following
dimensions

A1 :RN1 → RN1 , A0 :RN0 → RN0 ,

I10 :RN0 → RN1 , R0
1 :RN1 → RN0 .

1A common notation for two-grid methods uses subscripts “h” and “H”. We will not follow this since the
notation with numbers is straightforwardly applicable to the case with more levels.

7

We assume that N0 ≪ N1.

Given an approximation u
(i)
1 to the solution u1 of the fine-level problem A1u1 = f1, com-

pute the associated residual r
(i)
1 = f1 − A1u

(i)
1 . The idea of the coarse-space correction is

to solve the problem with A0 (corresponding to the coarse level) and this use to improve

(correct) the approximation u
(i)
1 on the fine level. Therefore, we solve

A0d
(i)
0 = R0

1r
(i)
1 (1.8)

and hope that
I10d

(i)
0 ≈ e

(i)
1 = u1 − u

(i)
1 .

In the notation from the previous section,

u
(i+1)
1 = u

(i)
1 + I10 (A0)

−1 R0
1r

(i)
1 .

The analysis of multigrid methods typically assumes that (1.8) is solved exactly. We will
also stick with this assumption for (most of) the course.

Natural and key question arises, when does the coarse-space correction work? Vaguely,
we need the problem A0d

(i)
0 = R0

1r
(i)
1 to be close to A1d

(i)
1 = r

(i)
1 , to capture “all its im-

portant features”. Algebraically, the matrices I10 and R0
1 are rectangular so that they have

(nontrivial) ranges and kernels. Then

• the norm ∥I10d
(i)
0 − e

(i)
1 ∥ can only be (relatively) small, if e

(i)
1 is close to Im(I10), the

range of I10,

• R0
1r

(i)
1 (nearly) vanishes if r

(i)
1 is close to Ker(R0

1), the kernel of R0
1.

These loosely formulated observations motivate our following development on how to
complement the coarse-space correction to develop a truly efficient solver. Later, in the
convergence analysis, we will see rigorous formulations.

1.3.2 Interpolation and restriction for finite differences

1D

Given a fine grid (partitioning) with the step size h1 = 1/n, it is natural to consider the
coarse grid as “every second node”, i.e., a partitioning with h0 = 2h1. Since the value in the
boundary nodes is determined by the boundary condition (equal to zero), for the number of
degrees of freedom, internal nodes, we have N1 = 2N0 − 1.

coarse node

fine node
DOFs (internal nodes)

8

For the interpolation, we determine the values in all (fine) nodes from the values in the
coarse nodes. A natural choice is illustrated in the figure below.

1× 1
2
×1

2
× interpolation

In the matrix notation,

I10 =

1/2
1
1/2 1/2

1

1/2
. . .

. . . 1/2
1
1/2

To determine the restriction, there are two options:

injection where one simply takes only the values in the nodes that are both on fine and
coarse grid (and the rest is ignored)

1× injection

full-weightening where the coarse value is determined also from the neighboring fine nodes

1
2
×

1
4
× 1

4
× full weightening

The matrix notation for the full-weightening restriction is then

R0
1 =

1/4 1/2 1/4

1/4 1/2 1/4

1/4 1/2 1/4
. . .

The fact that R0

1 = c(I10)
T for some constant c ∈ R is called variational property . For the

full-weightening restriction in 1D, c = 1/2. In general, the variational property simplifies the

9

analysis because of preserving the symmetry. Moreover, if2

A0 = R0
1A1I

1
0,

then for the coarse-space correction we have

u(i+1) = u(i) + I10(R
0
1A1I

1
0)

−1R0
1r

(i),

e(i+1) =
(
I− I10(R

0
1A1I

1
0)

−1R0
1A1

)
e(i),

where (I− I10(R
0
1A1I

1
0)

−1R0
1A1) is a projection (i.e., P = P2).

2D

There are more choices of coarse degrees of freedom possible in 2D. The most popular that
reduces the number of DOFs by factor of 4 while assuring that every fine-level node has two
coarse nodes “nearby” is

coarse node

fine node

For the ease of presentation, we did not display the boundary nodes.
The interpolation can be represented by a so-called stencil, describing how the value in

the coarse DOF is “spread” to the neighboring fine nodes. A natural one is
1/4 1/2 1/4

1/2 1 1/2

1/4 1/2 1/4

 , graphically
1
2
×1

4
×

1×

Please note that the stencil is not a submatrix of the interpolation matrix. The values from
the stencil are on a proper positions in a (sparse) column vector of the interpolation matrix.

The full-weightening restriction in 2D, given as the analogy to 1D case above, is as follows

1
8
×1

16
×

1
4
×

2This happens for example for the matrices from finite element discretizations.

10

This gives, for the restriction matrix,

R0
1 =

1

4
(I10)

T =

(
1

2

)d

(I10)
T .

1.3.3 Stationary iterative methods and smoothing property

Stationary iterative methods is a class of methods based on matrix splitting. Let

A = D− L− U, (1.9)

where D is the diagonal of A, −L is its strictly lower part, and U is the strictly upper part
of A.

Jacobi Method is based on the relationship

Au = f = Du− (L+ U)u ⇒ u = D−1(L+ U)u+ D−1f

giving the iterative scheme

u(i+1) = RJu
(i) + D−1f, RJ = D−1(L+ U). (1.10)

Weighted (damped) Jacobi Method is a variant of Jacobi method where the new
approximation is given as a linear combination of the previous approximation and the vector
given by the (standard) Jacobi. For some ω ∈ R,

u(i+1) = ω(RJu
(i) + D−1f) + (1− ω)u(i) = Rωu

(i) + ωD−1f, (1.11)

Rω = ωRJ + (1− ω)I = I− ωD−1A.

With ω = 1, Rω = RJ and the weighted Jacobi becomes the standard Jacobi method.

The practical disadvantage of both the method is that they requires storing both u(i)

and u(i+1). In some applications, it is not possible to store more than a single solution
vector. It may be then useful, if the vector u(i) is overwritten in the computation.

Gauss–Seidel Method is based on

(D− L)u = Uu+ f ⇒ u = (D− L)−1Uu+ (D− L)−1f

giving the iterative scheme

u(i+1) = RGSu
(i) + (D− L)−1f, RGS = (D− L)−1U. (1.12)

The implementation of Gauss–Seidel allows to store only one approximate vector and
update consecutively its components. Then, in contrast to Jacobi methods, the ordering of
degrees of freedom may affect the behavior of the solver.

11

Figure 1.3: Splitting the nodes for red-black Gauss–Seidel in 1D and 2D

Red-black Gauss–Seidel Method is a variant of GS to enhance its parallelization. The
idea is to split the degrees of freedom into two groups (“red” and “black”) as in Figure 1.3.

The advantage of such splitting is that the “red” values are updated using the neighboring
“black” values and vice versa. Instead of updating the elements of the vector u(i+1) one by
one, we can do the update in two steps; update first all the values in one of the groups and
then update the second one.

There are also other stationary methods (for example Richardson method, Successive
over-relaxation method (SOR), Symmetric successive over-relaxation (SSOR)) that we do
not discuss in detail.

Smoothing property

For an iterative process
u(i+1) = Ru(i) + g,

satisfying u = Ru+ g (i.e. such that u is its fixed point), the two consecutive errors satisfy

e(i+1) = Re(i). (1.13)

Recursively
e(i+1) = Ri+1e(0). (1.14)

We saw an analogous relation for iterative refinement with R = I−M−1A.
From the elementary course on numerical analysis,

lim
i→∞

Ri = 0 ⇐⇒ ρ(R) < 1,

where ρ(·) is the spectral radius. In other words, Ri tends to zero iff |λ| < 1 for each λ from
the spectrum of R.

Let (λ, v) be the eigenpair of R. Then

Riv = Ri−1Rv = λRi−1v = · · · = λiv

and ∥Riv∥ = |λ|i∥v∥. Therefore ∥Riv∥/∥v∥ converges to 0 faster for |λ| small (closer to 0)
and converges slower for |λ| large (closer to 1).

When decomposing e(i) into the eigensubspaces of R, some components will decay more
rapidly as i → ∞, while others will persist longer.

12

In applications, the eigenvectors of R associated with small eigenvalues (in the mag-
nitude) are typically oscillating and those associated with large eigenvalues are smooth.
Therefore

e(i) = Rie(0) is for large i a smooth vector.

This is therefore called a smoothing property (of stationary methods).

The smoothing property has two important consequences:

• The error will be after few steps dominated by the eigenvectors associated with large
eigenvalues of R (that are smooth).

• For appropriate starting vectors, smoothers (stationary iterative methods) converge
fast. Such vectors are dominated by the eigenvectors associated with the smallest
eigenvalues of R.

It is however more practical to relate smoothness to the problem to be solved and not to
a particular method. For (λk, vk) an eigenpair of A, there holds

∥vk∥2A = vTkAvk = vTk λkvk = λk∥vk∥2.

For model Poisson problem, the A norm corresponds to an energy that is minimized by the
exact solution u. Then it is said that a smooth vector has small energy, while an oscillating
vector has high energy. Therefore smooth eigenvectors are those corresponding to small
eigenvalues while oscillating eigenvectors to the large ones.

Since A is diagonalizable, there exists an orthonormal basis of RN formed from its eigen-
vectors. We can then focus on how the smoothing (application of a stationary iterative
method) and coarse-space correction act on the eigenvectors of A.

Eigenpairs of 1D finite-difference matrices and smoothing property for (weighted)
Jacobi

Recall
Rω = ωRJ + (1− ω)I = I− ωD−1A.

For A from (1.4), D = 2I and therefore3

D−1 =
1

2
I, Rω = I− ω

2
A.

From this one can see that for (λk, vk) an eigenpair of A, vk is also an eigenvector of Rω and

Rωvk =
(
1− ω

2
λk

)
vk.

3In 2D and 3D, D = αI for some α so that analogous result holds too.

13

Exercise. Verify by computation that for A from (1.4) of order n, the eigenpairs are

λk(A) = 4 sin2

(
kπ

2n

)
, 1 ≤ k ≤ n− 1, (1.15)

vk,j = sin

(
jkπ

n

)
1 ≤ k ≤ n− 1, 1 ≤ j ≤ n− 1. (1.16)

Using (1.15), the eigenvalues of Rω are

λk(Rω) = 1− 2ω sin2

(
kπ

2n

)
, 1 ≤ k ≤ n− 1. (1.17)

Note that with a finer partitioning, n increases, leading to the spectrum of Rω approaching
one, which generally slows down the convergence of the method.

We now illustrate the above findings in experiments. First, we plot in Figure 1.4, left,
the function

λ(x) = 1− 2ω sin2
(xπ
2n

)
, x ∈ (0, n), (1.18)

here with n = 64 and several choices of ω. Namely, ω = 1
3
, 1

2
, 1

2
, and 1. Please note that the

choice of n does not play a role here; it is only important to define the smallest eigenvalue
in (1.17) corresponding to x = 1. From the figure we can identify the modes (given by integer
values of x) where the absolute value of the function λ is the smallest, which indicate that
the damped Jacobi is reducing these modes the most efficiently. For (standard) Jacobi, this
is around x = n/2, for a damped variant, this x increases; for example, it equals to n for
ω = 1/2.

n/2 n

-1

-0.5

0

0.5

1

x

λ
(x
)

0 10 20 30 40 50

2

3

4

5

iteration

er
ro
r
n
or
m

Figure 1.4: Function (1.18) describing the spectrum of Rω in 1D (left). Euclidean norm of
the error in the iterations of weighted Jacobi with ω = 2/3 when the initial error is equal
to v1, v3, respectively v6 (right).

Varying convergence speed for different eigenvectors from (1.16) is illustrated in the right
part of Figure 1.4, where the euclidean norm of the error ∥e(i)∥ is plot. Therein, we set

14

n = 64, and solve the problem Au = 0 by damped Jacobi with ω = 2/3 and starting with
vk with k = 1, 3, 6. This choice of the problem and the initial guess means that the initial
error is equal to vk. We clearly see that the error corresponding to a smaller k is reduced
significantly less efficiently.

Finally, we plot the contraction of the error

∥e(5)∥
∥e(0)∥

(1.19)

in 5 iterations of (damped) Jacobi, together with the number of iterations needed to reduce
the euclidean norm of the error ∥e(i)∥ by two order of magnitude for the initial error equal to
vk, k = 1, . . . , n, n = 64. For the ease of presentation, the y-axis is cut at 100; in fact, more
than 5700 iterations are needed for k = 1 and damped Jacobi. In Figure 1.5, we give the
results for Jacobi method and in Figure 1.6 for the damped Jacobi with ω = 2/3. One can
see that Jacobi method has difficulties to reduce the error in the subspaces corresponding
to the eigenvectors with small and large k. The damped Jacobi handles better eigenvectors
with large k but still fails for those with k small. These are low oscillating vectors; cf. (1.15).

0 10 20 30 40 50 60
10

-15

10
-10

10
-5

10
0

k

co
n
tr
ac
ti
on

fa
ct
or

0 10 20 30 40 50 60

0

20

40

60

80

100

k

n
u
m
b
er

of
it
er
at
io
n

Figure 1.5: Jacobi method: contraction factor (1.19) (left) and the number of iterations
needed to reduce the euclidean norm of the error by 100 (right). The initial error is given by
the eigenvectors vk from (1.16). For small and large indices the number of iterations exceeds
100.

Gauss–Seidel method

For Gauss–Seidel, in general, the eigenvectors of A are not the eigenvectors of RGS. Therefore
the analysis of smoothing property is more subtle and we only illustrate it below in Figure 1.7.

15

0 10 20 30 40 50 60

10
-10

10
-5

10
0

k

co
n
tr
ac
ti
on

fa
ct
or

0 10 20 30 40 50 60

0

20

40

60

80

100

k

n
u
m
b
er

of
it
er
at
io
n

Figure 1.6: Damped Jacobi method with ω = 2/3: contraction factor (1.19) (left) and the
number of iterations needed to reduce the euclidean norm of the error by 100 (right). The
initial error is given by the eigenvectors vk from (1.16).

0 10 20 30 40 50

10
0

iteration

er
ro
r
n
or
m

0 10 20 30 40 50 60

0

20

40

60

80

100

k

n
u
m
b
er

of
it
er
at
io
n

Figure 1.7: Gauss–Seidel method: Euclidean norm of the error when the initial error is equal
to v1, v3, respectively v6 (left). Number of iterations needed to reduce the euclidean norm of
the error by 100; the initial error is given by the eigenvectors vk from (1.16) (right).

16

1.4 Multigrid Method

The multigrid solver (or preconditioner) efficiently combines smoothing and coarse-space
correction. In a two-level setting, we can consider three variants:

Var. I: start with smoothing and correct a smooth error on the coarse level

Var. II: perform the coarse-space correction, giving an oscillating error that is then smoothed
out

Var. III: combine I. (presmoothing) and II. (postsmoothing)

The latter variant can be illustrated by the scheme as

u(i) u(i+1)(pre)smoothing (post)smoothing

(A0)
−1 coarse-space correction

Generalization to a hierarchy of grids is based on the idea not to solve the problem in
the coarse-space correction by a direct solver (mathematically by inverting the matrix), but
to use a recursion until the coarsest-level problem is small enough.

The basic multigrid scheme is called V-cycle and can be illustrated as

u(i) u(i+1)

The recursive call can be more complex, giving, for example W-cycle

u(i) u(i+1)

We will later see a rigorous algorithmic description of both V- and W-cycles.
Finally, we illustrate a FMG (full multigrid) that can be regarded as a non-iterative

procedure, which starts on the coarsest level

17

u
(0)
0

u
(final)
3

Exercise. Write a pseudocode for the three MG variants described above. What additional
functions does FMG require beyond those used in V- or W-cycles?

18

Chapter 2

Abstract formulation of a multigrid
and its convergence

In this section, we present a general, abstract formulation of multigrid, derive an operator
that describes error reduction, and establish several sufficient conditions for the convergence
of the multigrid solver. This presentation closely follows [Shaidurov, 1995, Section 4].

2.1 An abstract multigrid algorithm

Consider

• a sequence of finite-dimensional spaces

M0,M1, . . . ,Mk

with the inner products (·, ·)i on Mi, i = 0, 1, . . . , k,

• interpolation operators

I i+1
i : Mi → Mi+1, i = 0, 1, . . . , k − 1,

• restriction operators

Ri−1
i : Mi → Mi−1, i = 1, 2, . . . , k,

• invertible operators
Ai : Mi → Mi, i = 0, 1, . . . , k,

• smoothers

DPRE
i,ℓ , DPOST

i,j : Mi → Mi, i = 1, 2, . . . , k, ℓ = 1, 2, . . . ,m1, j = 1, 2, . . . ,m2.

19

Given fk ∈ mk, we seek uk ∈ Mk such that

Akuk = fk.

We define MGi-algorithm for solving auxiliary problems Aivi = gi for arbitrary right-hand
side gi and an initial approximation w

(0)
i .

MGi-algorithm w
(1)
i = MGi(w

(0)
i , gi)

If i = 0, w
(1)
i = A−1

0 gi and leave, otherwise

(A1) presmoothing: set v(0) = w
(0)
i and

v(ℓ) = v(ℓ−1) +DPRE
i,ℓ (gi − Aiv

(ℓ−1)), ℓ = 1, 2, . . . ,m1.

(A2) restriction:
gi−1 = Ri−1

i

(
gi − Aiv

(m1)
)
,

(A3) coarse-space solution: set w̃(0) = 0 and call γ-times

w̃(s) = MGi−1(w̃
(s−1), gi−1) s = 1, 2, . . . , γ,

(A4) correction:
y(0) = v(m1) + I ii−1w̃

(γ),

(A5) postmoothing:

y(j) = y(j−1) +DPOST
i,j (gi − Aiy

(j−1)), j = 1, 2, . . . ,m2.

Finally, set w
(1)
i = y(m2).

We shall now describe the evolution of the error within one call of MGi. Given the
problem Aivi = gi, the initial guess w(0), we have

e(0) = vi − w(0)

e(1) = vi − w(1), w
(1)
i = MGi(w

(0)
i , gi).

Define error suppression operator
Bi : e

(0) 7→ e(1).

Denote

JPRE
i = (I −DPRE

i,m1
Ai)(I −DPRE

i,m1−1Ai) · · · (I −DPRE
i,1 Ai),

JPOST
i = (I −DPOST

i,m2
Ai)(I −DPOST

i,m2−1Ai) · · · (I −DPOST
i,1 Ai).

20

In the previous part, we saw that the error after smoothing with D satisfies (in the
previous notation)

e(i+1) = (I− DA)e(i)

and the error after coarse-space correction

e(i+1) = (I− I10A
−1
0 R0

1A1)e
(i).

Analogously, we get for two levels and MG1,

B1 = JPOST
1 (I − I10A

−1
0 R0

1A1)J
PRE
1 .

How Bi looks on finer levels with i > 1? The smoothing stays (up to the indices) the
same and the difference shall be in the “coarse-space correction” part. We therefore expect

Bi = JPOST
i CP JPRE

i ,

where CP stands for a recursive call of MGi−1 and most probably will involve the error
suppression Bi−1.

Let now focus on development of the error in steps (A2)–(A4):

• after (A1) we have v(m1) ≈ vi with the error σ(m1) = vi − v(m1).

• In the restriction (A2)

gi−1 = Ri−1
i

(
gi − Aiv

(m1)
)
= Ri−1

i Aiσ
(m1).

• The coarse-space solve (A3) starts with zero initial guess, therefore the error is equal
to the solution w̃∗. After one application of MGi−1 the error is Bi−1w̃∗ and there holds

w̃(1) = w̃∗ − (w̃∗ − w̃(1)) = w̃∗ −Bi−1w̃∗.

After γ steps of MGi−1 therefore

w̃(γ) = (I − (Bi−1)
γ)w̃∗.

• In the correction (A4)
y(0) = v(m1) + I ii−1w̃

(γ)

and therefore

vi − y(0) = (vi − v(m1))− I ii−1w̃
(γ)

= σ(m1) − I ii−1(I − (Bi−1)
γ)w̃∗

=
(
I − I ii−1(I − (Bi−1)

γ)A−1
i−1R

i−1
i Ai

)
σ(m1)

21

Altogether, the error suppression operator is

Bi = JPOST
i

(
I − I ii−1(I − (Bi−1)

γ)A−1
i−1R

i−1
i Ai

)
JPRE
i , B0 = 0. (2.1)

If the operators Ai, Ri−1
i , I ii−1, DPRE

i,ℓ , DPOST
i,j are linear, so is Bi. Additionally, Bi is

independent of gi or w0.
To prove the convergence of the multigrid, it is sufficient show that

ρ(Bi) < 1.

Since for every (induced) matrix norm ρ(Bi) ≤ |||Bi|||, we show that

|||Bi||| < 1− ϵ, ϵ > 0,

for some appropriate norm.

To sum up,

|||Bi||| < 1 =⇒ ρ(Bi) < 1 =⇒ (Bi)
je(0) → 0 ∀w0, gi.

2.2 Convergence of a symmetric multigrid

A symmetric multigrid is an important variant of multilevel methods. In particular, it can
be used as a preconditioner for the Conjugate Gradient method.

The symmetry in MG is represented by these assumptions:

(S1) operators Ai are self-adjoint and positive definite (in case of matrices, Ai are symmetric
positive-definite),

(S2) I ii−1 =
(
Ri−1

i

)∗
in the sense of inner products (·, ·)i on Mi,

(S3) JPRE
i =

(
JPOST
i

)∗
,

(S4) variational property Ai−1 = Ri−1
i AiI

i
i−1,

(S5) JPRE
i Ai = AiJ

PRE
i (which also assures that (JPRE

i)∗Ai = Ai(J
PRE
i)∗).

For the ease of presentation, set Ji := JPRE
i .

Thanks to (S1), operators Ai define inner products and the norm

(u, v)Ai
= (Aiu, v)i u, v ∈ Mi

∥u∥Ai
= (u, u)

1/2
Ai

u ∈ Mi

We also define an operator of (exact) coarse-space correction Qi : u → w such that

w = u− I ii−1A
−1
i−1R

i−1
i Aiu.

Therefore
Qi = I − I ii−1A

−1
i−1R

i−1
i Ai.

22

Lemma 2.1 (Properties of Qi). Under conditions (S1), (S2), (S4) the operator Qi is self-
adjoint projector from Mi into orthogonal complement of I ii−1Mi−1 with respect to the inner
product (·, ·)Ai

.

Proof. Let w = Qiu. We show that

(w, z)Ai
= 0 ∀z ∈ I ii−1Mi−1.

We have

(Aiw, z)i = (AiQiu, z)i
z=Iii−1y
= (AiQiu, I

i
i−1y)i

= (Aiu, I
i
i−1y)i − (Ri−1

i AiI
i
i−1︸ ︷︷ ︸

Ai−1

A−1
i−1R

i−1
i Aiu, y)i

= (Ri−1
i Aiu, y)i − (Ri−1

i Aiu, y)i = 0.

Operator Qi is a projection (as we have already seen)

Q2
i = I − 2I ii−1A

−1
i−1R

i−1
i Ai + I ii−1A

−1
i−1R

i−1
i AiI

i
i−1︸ ︷︷ ︸

Ai−1

A−1
i−1R

i−1
i Ai = I ii−1A

−1
i−1R

i−1
i Ai.

Finally, Qi is self-adjoint because

(Qiu, v)Ai
= (Ai(I − I ii−1A

−1
i−1R

i−1
i Ai)u, v)i

= (Aiu, v)i − (Aiu, I
i
i−1A

−1
i−1R

i−1
i Aiv)i = (u,Qiv)Ai

.

Now we can state a sufficient condition for the convergence. Let there exist c∗ > 0 such
that ∀i = 1, . . . , k, and ∀v ∈ Mi

∥v∥2Ai
− ∥Jiv∥2Ai

≥ c∗∥QiJiv∥2Ai
. (2.2)

After the first, introductory part of the course, we should be able to properly understand
the condition (2.2). We can discuss two scenarios. First, the vector v is “oscillatory” so that
it can by efficiently reduced by smoothing giving Jiv with small norm. In that case, the
coarse-space correction of Jiv (giving the vector QiJiv) need not be very efficient. Second
case is a smooth vector that is not smoothed out and therefore ∥v∥Ai

and ∥Jiv∥Ai
are close

to each other. Therefore, to fulfill (2.2), the vector QiJiv after the coarse-space correction
must be significantly reduced.

Theorem 2.2 (Convergence of a symmetric V-cycle MG). Let (S1) – (S5) hold together
with (2.2) for MGi algorithm with γ = 1. Then

∥Bi∥Ai
= sup

v∈Mi\0

∥Biv∥Ai

∥v∥Ai

≤ 1

1 + c∗
(
< 1

)
. (2.3)

23

Proof. Will be given on the lecture. Otherwise see [Shaidurov, 1995, Thm. 4.5].

A single inequality (2.2) yielding a sufficient condition for convergence is presented in
[Shaidurov, 1995, Eq. (4.82)] probably for the first time. More common in the literature is
to have two conditions, one for the intergrid operators and the second for the smoother. We
now state these conditions and show that they together imply (2.2) and, consequently, the
convergence of the multigrid.

First, consider so-called approximation assumption: let there exist constant c1 > 0 such
that

(Qiv, v)Ai
≤ c1

∥Aiv∥2i
λ∗
i

∀v ∈ Mi, (2.4)

where λ∗
i is either the largest eigenvalue of Ai or its upper bound.

Second, smoothing assumption states: let there exist c2 > 0 such that

∥AiJiv∥2i
λ∗
i

≤ c2
(
∥v∥2A−i − ∥Jiv∥2A−i

)
, ∀v ∈ Mi. (2.5)

Lemma 2.3. Under conditions (S1), (S2), (S4) the assumptions (2.4) and (2.5) imply (2.2)
with the constant c∗ = (c1c2)

−1.

Proof. From Theorem 2.1, Qi is a projection and self-adjoint with respect to (·, ·)Ai
. There-

fore
∥Qiv∥2Ai

= (Qiv,Qiv)Ai
= (Q2

i v, v)Ai
= (Qiv, v)Ai

.

Now choose Jiv for v, giving

∥QiJiv∥2Ai
= (QiJiv, Jiv)Ai

(2.4)

≤ c1
∥AiJiv∥2i

λ∗
i

(2.5)

≤ c1c2(∥v∥Ai
− ∥Jiv∥Ai

),

which gives (2.2).

2.2.1 Smoothing assumption and stationary iterative solvers

We shall now discuss when the smoothing assumption (2.5) is satisfied for stationary iterative
methods. Let

DPRE
i,ℓ = DPOST

i,j = Di ℓ = 1, . . . ,m1, j = 1, . . . ,m2, ∀i.

Recall that from (S3), we have m := m1 = m2.
Set Ki = I−DiAi, giving Ji = Km

i . Then (2.5) can be formulated for a single smoothing
iteration: let there exist c3 > 0 such that

∥Aiv∥2i
λ∗
i

≤ c3((I −Ki)v, v)Ai
∀v ∈ Mi. (2.6)

24

Lemma 2.4 ([Shaidurov, 1995, Lemma 4.3.3]). Let (S1) and (2.6) hold. Let Ki are sym-
metric, nonnegative in the inner product (·, ·)Ai

and ∥Ki∥Ai
≤ 1. Then (2.5) holds with the

constant c2 = c3/(2m).

Proof. From [Bramble and Pasciak, 1987, p. 316], we have

((I −Ki)K
2m
i v, v)Ai

≤ 1

2m

2m−1∑
j=0

((I −Ki)K
j
i v, v)Ai

, (2.7)

where we needed the properties of Ki (its spectrum w.r.t. the inner product (·, ·)Ai
stays in

the interval [0, 1]). When expanding the sum, intermediate terms vanish and we stay with

1

2m

2m−1∑
j=0

((I −Ki)K
j
i v, v)Ai

=
1

2m
((I −K2m

i)v, v)Ai
.

Using the symmetry of Ki and Km
i = Ji,

((I −Ki)Jiv, Jiv)Ai
≤ 1

2m

(
∥v∥2Ai

− ∥Jiv∥2Ai

)
.

Now take Jiv for v in (2.6) and use the previous inequality to get

∥AiJiv∥2i
λ∗
i

≤ c3((I −Ki)Jiv, Jiv)Ai
≤ c3

2m

(
∥v∥2Ai

− ∥Jiv∥2Ai

)
.

If interested, I have written down a detailed proof of (2.7).

2.3 Convergence in a general case

In a general case, we assume

(G1) Ai are nonsingular, i = 0, 1, . . . , k,

(G2) I1i−1 = (Ri−1
i)∗,

(G3) ∥Ji∥i ≤ cJ , i = 1, 2, . . . , k,

(G4) cI∥I ii−1u∥i ≤ ∥u∥i−1 ≤ cI∥I ii−1u∥i, ∀u ∈ Mi−1, i = 1, 2, . . . , k,

(G5) the number of smoothing steps is m = m1, m2 = 0, and

∥A−1
i − I1i−1A

−1
i−1R

i−1
i ∥i · ∥AiJi∥i ≤ η(m), i = 1, . . . , k,

where η does not depend on i a converges to 0 for m → ∞.

25

The inequality in assumption (G5) can be replaced by

(G5a) ∥
(
A−1

i − I1i−1A
−1
i−1R

i−1
i

)
AiJi∥i ≤ η(m), i = 1, . . . , k.

In a general case, there is no norm induced by Ai so that we will work with the norm

∥u∥i = (u, u)
1/2
i , u ∈ Mi, i = 0, 1, . . . , k.

The associated operator norm is

∥A∥i = sup
u∈Mi\0

∥Au∥i
∥u∥i

.

Theorem 2.5 (Convergence of W-cycle in the general case). Let (G1)–(G5) (alternatively
(G5a)) hold for MGi algorithm with γ = 2, m1 = m, and m2 = 0. Then for arbitrary
ξ ∈ (0, 1) there exists m0 such that ∀m ≥ m0

∥Bi∥i ≤ ξ ∀i = 0, 1, . . . , k. (2.8)

Proof. Will be given on the lecture. Otherwise see [Shaidurov, 1995, Thm. 4.11].

26

Index

approximation assumption, 24

coarse-space correction, 8

error, 3
error suppression operator, 20

full multigrid FMG, 17
full-weightening

1D, 9
2D, 10

Gauss–Seidel method
red-black, 12

interpolation
1D, 9
2D, 10

iterative refinement, 4

multigrid
algorithm, 20
general setting, 25
symmetric setting, 22

postsmoothing, 17
presmoothing, 17

residual, 3

smoothing assumption, 24
smoothing property

of relaxation methods, 13

V-cycle, 17
variational property, 9

W-cycle, 17

27

Bibliography

[Bramble and Pasciak, 1987] Bramble, J. H. and Pasciak, J. E. (1987). New convergence
estimates for multigrid algorithms. Math. Comput., 49:311–329.

[Briggs et al., 2000] Briggs, W. L., Henson, V. E., and McCormick, S. F. (2000). A multigrid
tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition.

[Rüde, 1993] Rüde, U. (1993). Mathematical and computational techniques for multilevel
adaptive methods, volume 13 of Frontiers in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA.

[Shaidurov, 1995] Shaidurov, V. V. (1995). Multigrid methods for finite elements, volume
318 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht.
Translated from the 1989 Russian original by N. B. Urusova and revised by the author.

28

	Key principles of the multigrid
	Error, Residual, Iterative Refinement
	Model Problem and its Discretization
	Discretization in 1D
	Discretization in 2D

	Elements of the Multigrid
	Coarse-space correction
	Interpolation and restriction for finite differences
	Stationary iterative methods and smoothing property

	Multigrid Method

	Abstract formulation of a multigrid and its convergence
	An abstract multigrid algorithm
	Convergence of a symmetric multigrid
	Smoothing assumption and stationary iterative solvers

	Convergence in a general case

